skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Asher, Michael W"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 1, 2026
  2. Akram, Bita; Shi, Yang; Brusilovsky, Peter; Price, Thomas; Koedinger, Ken; Carvalho, Paulo; Zhang, Shan; Lan, Andrew; Leinonen, Juho (Ed.)
    The “Doer Effect” is the empirical phenomenon observed as a stronger correlational relationship between students who complete more activities and their course learning outcomes compared to those who complete fewer activities or watch fewer videos. In this paper, we extended prior evidence of a “Doer Effect” to investigate how doing more can be related not only to better learning outcomes but also to motivational ones. Specifically, we investigated persistence as the student’s willingness to continue working on course activities. We used secondary analyses of data from MOOC that taught Advanced Placement (AP) Introductory Java Programming to high school students using the digital textbook platform RuneStone. Although we failed to identify a doer effect in learning outcomes, our analyses do suggest that completing more activities is related to longer persistence in the course than reading more pages or watching more videos. This effect does not appear to be limited to highly motivated students. 
    more » « less
    Free, publicly-accessible full text available July 19, 2026
  3. Free, publicly-accessible full text available June 1, 2026
  4. Many college students drop STEM majors after struggling in gateway courses, in part because these courses place large demands on students9 time. In three online experiments with two different lessons (measures of central tendency and multiple regression), we identified a promising approach to increase the efficiency of STEM instruction. When we removed lectures and taught participants exclusively with practice and feedback, they learned at least 15% faster. However, our research also showed that this instructional strategy has the potential to undermine interest in course content for less-confident students, who may be discouraged when challenged to solve problems without upfront instruction and learn from their mistakes. If researchers and educators can develop engaging and efficacy-building activities that replace lectures, STEM courses could become better learning environments. 
    more » « less
    Free, publicly-accessible full text available January 27, 2026
  5. null (Ed.)
    Researchers often invoke the metaphor of a pipeline when studying participation in careers in science, technology, engineering, and mathematics (STEM), focusing on the important issue of students who “leak” from the pipeline, but largely ignoring students who persist in STEM. Using interview, survey, and institutional data over 6 years, we examined the experiences of 921 students who persisted in biomedical fields through college graduation and planned to pursue biomedical careers. Despite remaining in the biomedical pipeline, almost half of these students changed their career plans, which was almost twice the number of students who abandoned biomedical career paths altogether. Women changed plans more often and were more likely than men to change to a career requiring fewer years of post-graduate education. Results highlight the importance of studying within-pipeline patterns rather than focusing only on why students leave STEM fields. 
    more » « less
  6. null (Ed.)